References
- Banerjee, H., Kakde, S. and Ren, H. (2018), Orumbot: Origami-based deformable robot inspired by an umbrella structure, in ‘2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, IEEE, pp. 910–915.
- Chen, Z., Tighe, B. and Zhao, J. (2022), ‘Origami-inspired modules enable a reconfigurable robot with programmable shapes and motions’, IEEE/ASME Transactions on Mechatronics 27(4), 2016–2025.
- Ghassaei, A., Demaine, E. D. and Gershenfeld, N. (2018), ‘Fast, interactive origami simulation using gpu computation’, Origami 7, 1151–1166.
- John, F. and COOKE, J. R. (2008), Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable kresling-pattern and cylindrical miura-ori, in ‘Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM’.
- Karras, J. T., Fuller, C. L., Carpenter, K. C., Buscicchio, A., McKeeby, D., Norman, C. J., Parcheta, C. E., Davydychev, I. and Fearing, R. S. (2017), Pop-up mars rover with textileenhanced rigid-flex pcb body, in ‘2017 IEEE International Conference on Robotics and Automation (ICRA)’, IEEE, pp. 5459–5466.
- Koleosho, J. and Saaj, C. M. (2019), System design and control of a di-wheel rover, in ‘Towards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019, Proceedings, Part II 20’, Springer, pp. 409–421.
- Kresling, B. (1996), ‘Plant” design”: mechanical simulations of growth patterens and bionics’, Biomimetics 3, 105–120.
- Kresling, B. (2002), ‘Folded tubes as compared to kikko (‘tortoise-shell55) bamboo’, Origami 3, 197.
- Lee, D.-Y., Jung, G.-P., Sin, M.-K., Ahn, S.-H. and Cho, K.-J. (2013), Deformable wheel robot based on origami structure, in ‘2013 IEEE International Conference on Robotics and Automation’, IEEE, pp. 5612–5617.
- Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S. and Cho, K.-J. (2013), The deformable wheel robot using magic-ball origami structure, in ‘International Design Engineering Technical Conferences and Computers and Information in Engineering Conference’, Vol. 55942, American Society of Mechanical Engineers, p. V06BT07A040.
- Lee, D.-Y., Kim, S.-R., Kim, J.-S., Park, J.-J. and Cho, K.-J. (2017), ‘Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure’, Soft robotics 4(2), 163–180.
- Miura, K. (1989), ‘A note on intrinsic geometry of origami’, Research of pattern formation pp. 91–102.
- Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. and Rus, D. (2015), An untethered miniature origami robot that self-folds, walks, swims, and degrades, in ‘2015 IEEE international conference on robotics and automation (ICRA)’, IEEE, pp. 1490–1496.
- Pagano, A., Yan, T., Chien, B., Wissa, A. and Tawfick, S. (2017), ‘A crawling robot driven by multi-stable origami’, Smart Materials and Structures 26(9), 094007.
- Reinventing the Wheel (n.d.), https://www.nasa.gov/specials/wheels/. Accessed: 2023-02-07.
- Rigid Folds (n.d.), http://origametry.net/rigid/rigid.html. Accessed: 2023-03- 024.
- Tomohiro Tachi, ”Freeform Origami” (n.d.), www.tsg.ne.jp/TT/software/. Accessed: 2022-12-024.
- Zhang, Q., Cai, J., Li, M. and Feng, J. (2018), Bistable behaviour of a deployable cylinder with kresling pattern, in ‘Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education (7OSME), Oxford, UK’, pp. 4–7.
- Great Scott : Servo - https://www.youtube.com/watch?v=J8atdmEqZsc
- The Engineering Mindset : H Bridge - https://www.youtube.com/watch?v=YYMsS50x1UY
- Automatedo : Potentiometer: https://www.youtube.com/watch?v=sWbSeJmUFfw