Skip to main content Link Search Menu Expand Document (external link)

References

  1. Banerjee, H., Kakde, S. and Ren, H. (2018), Orumbot: Origami-based deformable robot inspired by an umbrella structure, in ‘2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)’, IEEE, pp. 910–915.
  2. Chen, Z., Tighe, B. and Zhao, J. (2022), ‘Origami-inspired modules enable a reconfigurable robot with programmable shapes and motions’, IEEE/ASME Transactions on Mechatronics 27(4), 2016–2025.
  3. Ghassaei, A., Demaine, E. D. and Gershenfeld, N. (2018), ‘Fast, interactive origami simulation using gpu computation’, Origami 7, 1151–1166.
  4. John, F. and COOKE, J. R. (2008), Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable kresling-pattern and cylindrical miura-ori, in ‘Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM’.
  5. Karras, J. T., Fuller, C. L., Carpenter, K. C., Buscicchio, A., McKeeby, D., Norman, C. J., Parcheta, C. E., Davydychev, I. and Fearing, R. S. (2017), Pop-up mars rover with textileenhanced rigid-flex pcb body, in ‘2017 IEEE International Conference on Robotics and Automation (ICRA)’, IEEE, pp. 5459–5466.
  6. Koleosho, J. and Saaj, C. M. (2019), System design and control of a di-wheel rover, in ‘Towards Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019, Proceedings, Part II 20’, Springer, pp. 409–421.
  7. Kresling, B. (1996), ‘Plant” design”: mechanical simulations of growth patterens and bionics’, Biomimetics 3, 105–120.
  8. Kresling, B. (2002), ‘Folded tubes as compared to kikko (‘tortoise-shell55) bamboo’, Origami 3, 197.
  9. Lee, D.-Y., Jung, G.-P., Sin, M.-K., Ahn, S.-H. and Cho, K.-J. (2013), Deformable wheel robot based on origami structure, in ‘2013 IEEE International Conference on Robotics and Automation’, IEEE, pp. 5612–5617.
  10. Lee, D.-Y., Kim, J.-S., Kim, S.-R., Koh, J.-S. and Cho, K.-J. (2013), The deformable wheel robot using magic-ball origami structure, in ‘International Design Engineering Technical Conferences and Computers and Information in Engineering Conference’, Vol. 55942, American Society of Mechanical Engineers, p. V06BT07A040.
  11. Lee, D.-Y., Kim, S.-R., Kim, J.-S., Park, J.-J. and Cho, K.-J. (2017), ‘Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure’, Soft robotics 4(2), 163–180.
  12. Miura, K. (1989), ‘A note on intrinsic geometry of origami’, Research of pattern formation pp. 91–102.
  13. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. and Rus, D. (2015), An untethered miniature origami robot that self-folds, walks, swims, and degrades, in ‘2015 IEEE international conference on robotics and automation (ICRA)’, IEEE, pp. 1490–1496.
  14. Pagano, A., Yan, T., Chien, B., Wissa, A. and Tawfick, S. (2017), ‘A crawling robot driven by multi-stable origami’, Smart Materials and Structures 26(9), 094007.
  15. Reinventing the Wheel (n.d.), https://www.nasa.gov/specials/wheels/. Accessed: 2023-02-07.
  16. Rigid Folds (n.d.), http://origametry.net/rigid/rigid.html. Accessed: 2023-03- 024.
  17. Tomohiro Tachi, ”Freeform Origami” (n.d.), www.tsg.ne.jp/TT/software/. Accessed: 2022-12-024.
  18. Zhang, Q., Cai, J., Li, M. and Feng, J. (2018), Bistable behaviour of a deployable cylinder with kresling pattern, in ‘Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education (7OSME), Oxford, UK’, pp. 4–7.
  19. Great Scott : Servo - https://www.youtube.com/watch?v=J8atdmEqZsc
  20. The Engineering Mindset : H Bridge - https://www.youtube.com/watch?v=YYMsS50x1UY
  21. Automatedo : Potentiometer: https://www.youtube.com/watch?v=sWbSeJmUFfw